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Abstract – 
In domain-specific named entity recognition (NER), 
the out-of-vocabulary (OOV) problem arises due to 
linguistic features and rare vocabulary. OOV 
problem is particularly challenging in agglutinative 
languages such as Korean. The irregular 
decomposition of morphemes makes it difficult to 
represent all of them in language model dictionaries, 
resulting in poor NER performance. Subword 
tokenization which segments a word into atomic 
tokens that are no longer divided can be one of the 
possible solutions. In the construction industry, 
existing NER methods do not effective on housing 
defect complaints which contain many rare words, 
including jargon, slang, and typos. To address this 
challenge, we propose subword tokenization 
algorithms that can mitigate OOV problems based on 
considering linguistic features and pre-trained 
language models (PLMs). The primary objective of 
this study is to identify the optimal NER performance 
by comparing different subword tokenization 
methods depending on the language models used. For 
domain-specific NER, we defined and used 23 defect-
specific named entity tags for dataset labelling. We 
then experimented with a total of three state-of-the-
art language models: one SentencePiece-based and 
two WordPiece-based subword tokenization models. 
The results demonstrate that the SentencePiece-based 
Korean Bidirectional Encoder Representations from 
Transformers (KoBERT) outperformed the two 
WordPiece-based language models (multilingual-
BERT and Korean Efficiently Learning an Encoder 
that Classifies Token Replacements Accurately 
(KoELECTRA)) with an F1 score of 84.7%. The 
proposed method is expected to improve not only 
NER but also other downstream tasks that involve 
using Korean documents in the construction industry. 
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1 Introduction 
In natural language processing (NLP), many studies 

have shown that the out-of-vocabulary (OOV) problem 
degrades the performance of downstream tasks, such as 
named entity recognition (NER), speech recognition, and 
neural machine translation [1–4]. OOV occurs because 
domain-specific terms, non-standard words, or typos in a 
test dataset do not exist in the vocabulary of a training 
corpus [5].  

A representative example of unstructured noisy text 
data is housing defect complaints, which include 
numerous non-standard words and words that rarely 
appear in construction text. When defect complaints are 
automatically analyzed, such non-standard and rarely 
used words are often divided into unintended ways, and 
consequently, the original meaning is lost. Moreover, 
these incorrectly tokenized characters are recognized as 
‘unknown’ tokens, tagged as ‘[UNK]’ in the NER task 
results. The ‘[UNK]’ token refers to the failure to decode 
corresponding tokens based on the embedded vocabulary 
sets in each pre-trained language model (PLM). 
Therefore, the OOV problems become more serious as 
non-standard words used only in specific domains, as 
well as typos and syntax errors, increase. 

Among many previous efforts to reduce OOV, 
subword tokenization is one of the promising solutions 
[3,6–8]. Subword tokenization refers to the segmentation 
of words into smaller tokens that can be aggregated or 
decomposed based on the principles of subword 
tokenization algorithms [9]. According to these 
principles, frequently appearing terms should not be 
segmented, but rarely used combinations of characters 
should be decomposed [10].  

The most widely used subword tokenization methods 
in transformer-based PLMs are the WordPiece and 
SentencePiece algorithms [11,12]. While WordPiece 
tokenizes input text by finding the sequence of characters 
that can make the longest word, SentencePiece tokenizes 
input text by predicting the most common token that 
appears after the previous token [12]. Thus, WordPiece 
is sensitive to the wordlist of a given language while 
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SentencePiece is language-independent [13]. 
In this study, we investigated the effect of the 

difference between WordPiece and SentencePiece 
algorithms on NER performance. Three pre-trained 
language models—Multilingual Bidirectional Encoder 
Representations from Transformers (mBERT), Korean 
Efficiently Learning an Encoder that Classifies Token 
Replacements Accurately (KoELECTRA), and Korean 
BERT (KoBERT)—were fine-tuned using a defect 
complaint corpus through transfer learning. Each pre-
trained model has its own embedded tokenizer with two 
different subword tokenization algorithms, either 
WordPiece or SentencePiece. To perform NER based on 
housing defect complaints, we also defined defect-
specific named entity tags in the pre-processing step. The 
NER performance was evaluated using the F1 score and 
accuracy.  

The paper is organized as follows. In Section 2, 
related works on solutions to OOV problems and 
subword tokenization methods are reviewed. In Section 
3, the research methods are described in detail. In Section 
4, the results are presented with some discussion, and in 
Section 5, study limitations and suggestions for future 
work are provided.  

2 Related Work 

2.1 OOV Problems and Solutions 
Fundamentally, OOV problems occur because a 

language model is dependent on a training dataset [14]. 
During the language model training process, if the words 
do not appear in the training dataset, the language model 
cannot learn the embedding vectors. Consequently, OOV 
problems degrade the system performance. More severe 
OOV problems occur in low-resource languages (e.g., 
non-alphabetical languages) or web-generated text, 
including slang, coinage, and emojis [4]. To overcome 
these problems, several solutions have been proposed.  

The easiest and simplest method is to eliminate OOV 
as noise [14]. However, this method is rarely used, owing 
to the risk of losing important words. Another solution is 
to use spell-check algorithms, such as the Peter Norvig 
algorithm [15] and the Levenstein distance [16]. 
However, spell-check algorithms cannot solve semantic 
OOV problems caused by jargon or slang.  

Previous studies have proposed deep learning-based 
typo embedding methods [17] or language-independent 
architecture of robust word vectors [18]. However, these 
methods were not able to separate irregular morphemes 
of agglutinative words into meaningful units. 
Consequently, they could not be applied to solve OOV 
problems in agglutinative languages, such as Korean. 

Some studies focused on dealing with OOV problems 
considering the linguistic features of Korean [14,19–21]. 

One of the specific linguistic features of Korean that 
previous studies mainly focused on is a sub-character, 
called ‘jamo’, which consists of 14 consonants and 10 
vowels. However, although those studies have proposed 
high performance on tokenization regarding sub-
characters, the proposed methods are limited to use for 
the tokenizer the existing transformer-based language 
models. A comparison of the previous efforts to mitigate 
OOV problems is shown in Table 1.  

Table 1. Comparison of the existing methods that 
mitigate OOV problems 

Previous 
methods 

Advantage Disadvantage Ref. 

Remove 
OOV 

Easy Losing 
information 

[14] 

Spell-check Easy, 
Accurate 

Not effect for 
semantic errors 

[15,16] 

Deep-
learning-

based 

Robust on 
typos 

Not effect for 
rich-morpheme 

languages 

[17,18] 

Language-
specific 
OOV 

handling 

Specific to 
language 
features 

Limited to 
transformer-

based language 
models 

[14,19–
21] 

To overcome the previous methods’ limitations, and 
solve the OOV problem while utilizing most state-of-the-
art (SOTA) language models based on the transformer 
architecture, subword tokenization—a method for 
segmenting words into smaller units—has emerged [4]. 
The smaller units can be Unicode or characters, which 
can no longer be divided based on the specific algorithm 
[22]. Various subword tokenization algorithms that have 
been used by integrating transformer-based language 
models are described in the following section.  

2.2 Subword Tokenization Algorithms 
There are several types of subword tokenization 

methods, such as byte pair encoding (BPE) [3], unigram 
language model (ULM) [6], WordPiece [4], and 
SentencePiece [13].  

BPE is a basic subword tokenization algorithm, 
which finds pairs of characters that appear the most 
sequentially and combines them into one word [3]. BPE 
was originally introduced to compress data [23], after 
which the algorithm was proposed as an OOV solution 
for neural machine translation [3]. In the iterative process 
of BPE, a set containing a pair or token and a token’s 
frequency is generated. Then, each token is divided into 
character levels by a pre-tokenizer according to the space. 
In each iteration, the most frequent character pair is 



merged until the desired or pre-defined vocabulary size 
is reached. The core idea of BPE is to consider text as a 
sequence of bytes rather than a sequence of characters. 
Therefore, BPE can be applied to any type of character 
[3]. 

The WordPiece model is an expanded BPE algorithm. 
An ideal subword tokenizer divides low-frequency or 
morphologically complex words into smaller subword 
units, otherwise keeping high-frequency words as they 
are. The WordPiece tokenizer is used in BERT, 
DistillBERT, and ELECTRA [4]. The WordPiece model 
merges pairs of characters that increase the likelihood of 
a corpus, which is different from BPE, which uses word 
frequency. In other words, WordPiece algorithms choose 
to divide or preserve words depending on the direction 
that increases the probability of the language model the 
most.  

A unigram language model (ULM) was proposed 
based on a subword tokenization algorithm that outputs 
multiple subword tokenization with probabilities [6]. The 
ULM supposes that each subword occurs independently, 
and consequently. Therefore, each subword occurrence 
probability can be estimated by maximizing the expected 
likelihood. A ULM is usually used with SentencePiece in 
transformer-based language models to increase system 
performance. 

SentencePiece is an unsupervised subword tokenizer 
and detokenizer [13,24], and was developed based on 
ULM [6] and BPE [3] subword regularization algorithms. 
Unlike all other algorithms, which require pre-
tokenization based on whitespace, SentencePiece 
directly processes the input text without pre-tokenization. 
Instead of pre-tokenization, SentencePiece can be trained 
using raw sentences that include whitespace. In addition, 
the original whitespace can be preserved by replacing it 
with an underscore (‘_’; represented by U+2581 in 
Unicode) in the subword tokenization stage. Conversely, 
the subword tokens can be detokenized without any 
ambiguity caused by whitespace. For example, the 
complaint ‘wall paper torn’ can be segmented as ‘['▁w', 
'all', '▁p', 'ap', 'er', '▁t', 'or', 'n']’ by the SentencePiece 
tokenizer. This shows that SentencePiece considers a 
sentence as a Unicode sequence rather than characters. 
This principle makes SentencePiece work on non-space 
or space-free languages. This is the most significant 
difference from other subword tokenization algorithms 
because it makes the SentencePiece language 
independent. As SentencePiece supports on-the-fly 
processing through Python and Tensorflow Library API, 
it can be easily integrated and customized with other 
frameworks. SentencePiece has been widely adopted in 
many SOTA language models, such as ALBERT [25], 
XLNet [26], and T5 [27].  A comparison of subword 
tokenization methods is shown in Table 2. 

After conducting a thorough review of previous 

efforts, we have identified several research gaps. First, 
there exist multiple effective subword tokenization 
algorithms that are dependent on the linguistic features of 
a given language. The language-dependent tokenizer 
requires separate training for every language it may not 
perform as well in cross-lingual tasks. Second, the choice 
of subword tokenization algorithm is determined during 
the pre-training process of the internal tokenizer of the 
PLMs. Third, the various subword tokenization 
approaches employed by different PLMs can have a 
significant impact on the performance of downstream 
tasks. 

Table 2. Comparison of subword tokenization methods 

Cate
gory 

BPE [3] ULM [6] Word 
Piece [4] 

Sentence 
Piece [13] 

SA Char, 
Unicode 

Char BPE BPE, 
ULM 

FP Word 
frequency 

Likeli- 
hood 

Likelihood BPE-
dropout 

VS Enlargeme
nt 

Pre-
defined 

Enlarge- 
-ment

Pre-
defined 

PT Require Require Require No 
OS Yes Yes Google 

internal 
Yes 

PL No No N/A Yes 
HT Yes Yes Yes Yes 

* SA: Supported algorithms; FP: Functional principle;
VS: Vocab-Size; PT: Pre-tokenization required; OS:
Open source; PL: Python library available; HT:
HuggingFace tokenizer available.

In light of these research gaps, it is crucial to consider 
the linguistic features, such as the agglutinative nature of 
the Korean language, when performing NER using 
transformer-based PLMs. Fourth, NER tasks with 
domain-specific text data and their respective subword 
tokenization algorithm have been rarely studied. 
Therefore, this study aims to identify the most effective 
PLM and subword tokenization algorithm for domain-
specific NER tasks for construction defect management. 

3 Research Methods 
The research flow is depicted in Figure 1. For this 

study, over 90,000 defect complaints were collected from 
several collective housing construction sites in South 
Korea. After performing deduplication and removing 
abnormal data, a dataset of 69,750 complaints was used 
for training and validation Additionally, we created a 
separate ground truth test dataset consisting of 4,566 
complaints gathered from different construction sites. 
The test dataset was constructed through cross-validation 



by three researchers, who possess extensive defect 
inspection experience at construction sites. 

After pre-processing and tokenizing, the collected 
data were labeled with defect named entity tags for NER. 
Labeling was performed on a rule basis using a dictionary 
of defective object names that corresponded to 23 tags
defined in advance. The first labeling results were cross-
validated by three researchers who perform defect 
inspections at construction sites. 

Subsequently, the labeled dataset was divided into a 
training dataset for transfer learning and a testing dataset 
for the NER performance evaluation at a ratio of 9:1.
Before transfer learning, the PLM uses each tokenizer to 
perform subword tokenization of the input text. In the test 
phase of the fine-tuned language model, the same 
subword tokenization was applied. The NER results are 
compared with the F1 score and accuracy as evaluation 
indices. 

Figure 1. Research flow

3.1 Tokenization and Labeling Dataset
As Korean is an agglutinative language, most Korean 

words consist of ‘a stem of the word (a meaning part)’
and ‘a particle or an ending (a grammatical part).’ For 
example, ‘물이새는(water leak)’ can be decomposed to
the following combination: ‘물(water: stem)’+ 

‘이(particle)’ + ‘새(-다)(leak: stem)’+ ‘(ending)’. The 
morpheme analysis-based tokenization method is 
required to separate and process the meaning parts and 
the grammatical function parts.

To achieve this, we used Korean-specific NLP 
libraries, including MeCab-Ko [28], a Korean version of 
the original MeCab [29], for morpheme analysis and 
tokenization. In the first pre-processing step, the date or 
time expressions, ‘07/07/2021’ and ‘07:37’, were 
processed and extracted using regular expression rules,
and other punctuation and symbols were removed. Then,
the rest of the pure text part was tokenized using the 
MeCab-Ko tokenizer. The pure text part of the defect 
complaints was tokenized, and the part of speech (POS) 
was tagged. We extracted not only nouns but also verbs, 
adjectives, and adverbs because they also represent 
defect phenomena: for example, ‘skew(-ed)’ or ‘tilt(-ed)’. 

After tokenization, all tokens should be labeled with
an NE tag, information that we want to extract. Moreover,
it is necessary to label the entire dataset to construct the
training dataset and the ground truth. Before labeling the 
NE tags, we need to define defect-related NE categories. 
Unlike existing NER methods that have general NE tags,
such as the name of the country, city, or person, domain-
specific NE tags should be defined to recognize the 
specialized terms in a certain domain. In this study, 17 
tags were defined based on Omniclass Table 22 [30].  The 
categories include structure work (STR), waterproofing
(WPF), electrical work (ELC), door and window (DNW), 
cabinet work (FUR), stonework (STM), paper hanging 
work (PAP), flooring (FLR), painting and finishing 
(FNS), tiling (TLE), masonry (MSN), home appliance 
work (APL), mechanical systems (MEC), gas fitting 
work (GAS), fire protection work (FIR), miscellaneous 
(MIS), and elevator work (ELV). In addition, five meta-
data categories were defined to identify the date and time 
(TME), the name of the room or space (SPC), a specific 
part of the space, such as ‘above’ or ‘left side’ (LOC), the
type of request (REQ), the name of person or 
organization in charge of the repair work (WHO) and 
expressions that describe defect phenomena (DFT).

To label the dataset using 23 NE tags, we checked the 
tokenization error cases, which means a series of words
that should not be decomposed are tokenized. For 
example, a multi-token entity consists of more than one 
word, such as ‘poor horizontal and vertical alignment’, 
which is tokenized as five words: ‘poor/ horizontal/ and/ 
vertical/ alignment’. If this multi-token entity is 
decomposed, the original meaning will be lost, and it 
cannot be properly recognized as a defect NE. As a 
solution, we performed tokenization and NE labeling 
according to the ‘inside-outside-beginning2 (IOB2) 
scheme’. The IOB2 scheme is a popular tagging scheme 
for recognizing a multi-token NE in an NER task [31]. ‘I’ 
indicates that the token is inside the NE, and ‘B’ indicates 
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the start token of the NE. ‘O’ indicates that the token 
belongs to none of the NE. ‘I’ and ‘B’ are joined in front 
of each NE tag (i.e., B-DFT, B-SPC, and I-SPC), and ‘O’ 
is used alone. The dataset was labeled based on the rule-
based method, and then the automatically labeled dataset 
was cross-validated by three researchers who have defect 
inspection experience.  

3.2 Pre-trained Language Models with 
Different Subword Tokenization 
Algorithms 

The PLM has a substantial number of context 
vectors and vocabularies. Thus, it is easy to shift and use 
efficiently for specific tasks by fine-tuning based on the 
transfer learning rather than training the whole neural 
architecture from scratch. For specific domains (e.g., 
medical or construction), fine-tuning a PLM with a 
domain-specific corpus is recommended to achieve 
higher performance [32]. Therefore, we chose three 
PLMs and implemented them for NER transfer learning.  

Three PLMs with different subword tokenizers were 
used to transfer learning for NER. The mBERT 
developed by Google and KoELECTRA have a 
WordPiece tokenizer, while KoBERT uses a 
SentencePiece tokenizer. As the dataset is Korean, we 
first selected mBERT [33] as the baseline model. We also 
selected KoBERT, a specifically trained BERT with the 
Korean dataset KoWiki composed of 54 million words 
[34]. KoELECTRA [35] was chosen to compare the 
performance of different language model algorithms 
between BERT and ELECTRA, which is known for 
exceeding BE T’s performance in terms of training 
speed with less data. The specifications of the three pre-
trained language models are described in Table 3. 

Table 3. Details of the pre-trained language models 

Category KoBERT mBERT Ko-
ELECTRA 

Tokenizer 
Algorithm 

SentencePie
ce 

WordPiece WordPiece 

Pre-trained 
Language 

Korean 104 
languages 

Korean 

Parameter 92M 110M 110M 
Layers 12 12 12 

Reference [34] [36,37] [38,39] 

3.3 Experiment Design 
Subword tokenization was performed as a previous 

step for fine-tuning PLMs. The input text data are 
tokenized by the pre-trained tokenizer designated by each 
language model. In this process, the label of each token 

was also expanded to the same number of subword 
tokens. Then, subword tokens and labels were converted 
to a numerical format using a pad sequence, and the 
attention mask was generated at the same time. We 
observed the subword tokenization results in the middle 
of the experiment process to determine how subword 
tokenization affects the final NER performance. To 
compare this with the case without subword tokenization, 
a deep neural network model, a bi-directional long-short-
term-memory (bi-LSTM) network, was performed as a 
baseline. 

All input texts were fit into the same fixed length of 
the 0.985 quantile value (top 1.5%) of the entire training 
dataset, because all the text lengths of the input data are 
different. In this process, the 0.985 quantile value was 
defined as the maximum length, one of the 
hyperparameters that determines the input vector shape. 
The same value of the 0.985 quantile of the input text 
length was applied to the input of the testing dataset in 
the evaluation.  

In the experiments, all three PLMs were fine-tuned to 
only three epochs with a batch si e of 32, an ‘ d am’ 
optimizer with a learning rate of 2.E-05, and 
‘ p arseCategoricalCrossentrop ’ as for a loss function. It 
is important to note that batch size refers to the number 
of data points used to update the model’s parameters 
during a single forward/backward pass. The ‘ d am’ 
optimi er , which stands for ‘ d aptive  o ment 
Estimation’ is commonl  used in deep neural networks 
for its training efficiency. Despite the default learning 
rate value of 1.E-03, we opted for a smaller value of 2.E-
05 for enhancing generalization efficiency 

3.4 Evaluation Metrics 
Accuracy and the F1 score were employed to evaluate 

the NER performance considering each performance of 
the NE tags. The total number of NE tags is 46, which is 
twice the unique 23 tags owing to the addition of ‘I’ and 
‘B’ of the IOB2 scheme. Similar to the multi-class 
classification with imbalanced data distribution, the F1 
score, a harmonic mean of precision and recall, is widely 
used for evaluating NER performance [40]. Accuracy 
refers to the ratio of the number of correctly predicted 
samples over the number of all samples regardless of 
class. Therefore, we measured both F1 score and 
accuracy to consider the imbalanced distribution of each 
NE tag. The evaluation metrics for integrating NER tags 
can be automatically obtained with a Python library for 
sequence labeling evaluation named ‘seqeval’ [41].   

4 Results and Discussion 
The NER performance results depending on the three 

PLMs with different subword tokenization algorithms 
are shown in Table 4.  



Table 4. NER performance results for the deep neural 
network-based model and three PLMs with different 

subword tokenization methods 

NER Models SW-T* F1 
(%) 

Acc. 
(%) 

(Baseline) bi-LSTM - 23.0 49.0 
mBERT WP 72.0 86.6 

KoELECTRA WP 72.4 86.3 
KoBERT SP 84.7 89.3 

*SW-T: Subword tokenization algorithm; WP:
WordPiece; SP: SentencePiece

For the NER performance, the KoBERT model using 
the SentencePiece algorithm as a subword tokenizer had 
the best F1 score (84.7%) and an accuracy of 89.3%. 
There was little difference in performance between the 
BERT and ELECTRA models using the WordPiece 
algorithm, but a significant difference in the F1 score, 
which was 11.7% lower than that of the KoBERT model. 
For the baseline, the bi-LSTM showed a very low 
performance even with the same training and test datasets 
except for the subword tokenization step. 

Table 5.  Subword tokenization results (translated into 
English from the original Korean words) 

Word 
Tag 

KoBERT mBERT KoELECT
RA 

Zendai _Zendai Zen##da##i Zen##dai 

B-STN O B-STN

Osai _Osai O##sa##i Osa##i 

B-DNW O B-DNW

Ventil
ating 
Fan 

_Ventilating
_Fan 

[UNK] Ventilating
##Fan 

B-SYS/
I-SYS

O B-SYS/
I-SYS

Float-
ing 

_Float_ing Flo##[UNK] Floating 

B-DFT/
I-DFT

O B-DFT

Horizo
ntal 

Defect 

_Horizontal
_defect 

Horizon##tal#
#de##fect 

Horizontal
##defect 

B-DFT/
I-DFT

B-DFT B-DFT/
I-DFT

To compare the subword tokenization results of three 
language models, we selected five words—zendai, osai, 
ventilating fan, floating, and horizontal defect—that 
frequently lead to tokenization errors when a morpheme-
based tokenizer is used. 

The results for subword tokenization with the 
corresponding NER tag relying on three PLMs are shown 
in Table 5. KoBERT with SentencePiece correctly 

tokenized all words, but mBERT and KoELECTRA 
showed different results although they used the same 
WordPiece algorithm. In mBERT, the defect-related 
tokens were incorrectly tagged with the ‘O’ tag because 
the segmented tokens were recognized as [UNK].  

The subword sequences tokenized by mBERT 
showed a smaller segmentation pattern similar to 
KoELECTRA. This result can be interpreted as 
KoELECTRA was trained one more time in Korean, and 
naturally, its vocabulary is larger; thus, the probability of 
preserving a word is greater than the probability of 
splitting a word. 

5 Conclusion 
The OOV problem deteriorates the overall NER 

performance because invalid tokens recognized as 
‘unknown’ fail in named entity tagging. And this problem 
occurs more often in agglutinative language such as 
Korean due to its complex morphological feature. To 
mitigate this problem, subword tokenization methods 
have been widely used, which either decompose the word 
into subword units or aggregate in reverse based on the 
maximization of probability or likelihood between the 
sequence of the subword units.  Based on these principles, 
most state-of-the-art transformer-based language models 
adopt WordPiece or SentencePiece, the representative 
subword tokenization algorithms, as their tokenizer.  

In this study, we investigated differences in NER 
performance when we suggested that the different 
subword tokenization methods affect the overall 
downstream task. To validate this hypothesis, mBERT 
and KoELECTRA using WordPiece and KoBERT using 
SentencePiece were selected. In NER, each subword 
tokenization was applied before the fine-tuning and 
testing steps. This means that each language model 
obtains a different shape of the sequence of the tokens as 
an input, depending on the subword tokenization method. 

As a result, this study confirmed that the KoBERT 
model using the SentencePiece tokenizer showed the best 
performance based on the F1 score (84.7%), as well as 
the most accurate tokenization results. In addition, 
SentencePiece showed more robust tokenization results 
in Korean than WordPiece. Although this study has 
limitations in not controlling for other factors that can 
affect performance, such as parameter optimization 
during transfer learning or skewed distribution of NE tags, 
they will be further investigated and adjusted to deliver 
more robust results in future studies. Another future 
study will include further validation of whether the direct 
training of SentencePiece using a domain-specific corpus 
improves downstream tasks. 
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