
Subword Tokenization of Noisy Housing Defect Complaints
for Named Entity Recognition

Kahyun Jeon1 and Ghang Lee2

1Department of Architecture and Architectural Engineering, Yonsei University, Republic of Korea
jeonkh0310@yonsei.ac.kr, glee@yonsei.ac.kr

Abstract –
In domain-specific named entity recognition (NER),
the out-of-vocabulary (OOV) problem arises due to
linguistic features and rare vocabulary. OOV
problem is particularly challenging in agglutinative
languages such as Korean. The irregular
decomposition of morphemes makes it difficult to
represent all of them in language model dictionaries,
resulting in poor NER performance. Subword
tokenization which segments a word into atomic
tokens that are no longer divided can be one of the
possible solutions. In the construction industry,
existing NER methods do not effective on housing
defect complaints which contain many rare words,
including jargon, slang, and typos. To address this
challenge, we propose subword tokenization
algorithms that can mitigate OOV problems based on
considering linguistic features and pre-trained
language models (PLMs). The primary objective of
this study is to identify the optimal NER performance
by comparing different subword tokenization
methods depending on the language models used. For
domain-specific NER, we defined and used 23 defect-
specific named entity tags for dataset labelling. We
then experimented with a total of three state-of-the-
art language models: one SentencePiece-based and
two WordPiece-based subword tokenization models.
The results demonstrate that the SentencePiece-based
Korean Bidirectional Encoder Representations from
Transformers (KoBERT) outperformed the two
WordPiece-based language models (multilingual-
BERT and Korean Efficiently Learning an Encoder
that Classifies Token Replacements Accurately
(KoELECTRA)) with an F1 score of 84.7%. The
proposed method is expected to improve not only
NER but also other downstream tasks that involve
using Korean documents in the construction industry.

Keywords –
Out of vocabulary (OOV), Subword tokenization;

WordPiece; SentencePiece; Named entity recognition
(NER); Construction defect management

1 Introduction
In natural language processing (NLP), many studies

have shown that the out-of-vocabulary (OOV) problem
degrades the performance of downstream tasks, such as
named entity recognition (NER), speech recognition, and
neural machine translation [1–4]. OOV occurs because
domain-specific terms, non-standard words, or typos in a
test dataset do not exist in the vocabulary of a training
corpus [5].

A representative example of unstructured noisy text
data is housing defect complaints, which include
numerous non-standard words and words that rarely
appear in construction text. When defect complaints are
automatically analyzed, such non-standard and rarely
used words are often divided into unintended ways, and
consequently, the original meaning is lost. Moreover,
these incorrectly tokenized characters are recognized as
‘unknown’ tokens, tagged as ‘[UNK]’ in the NER task
results. The ‘[UNK]’ token refers to the failure to decode
corresponding tokens based on the embedded vocabulary
sets in each pre-trained language model (PLM).
Therefore, the OOV problems become more serious as
non-standard words used only in specific domains, as
well as typos and syntax errors, increase.

Among many previous efforts to reduce OOV,
subword tokenization is one of the promising solutions
[3,6–8]. Subword tokenization refers to the segmentation
of words into smaller tokens that can be aggregated or
decomposed based on the principles of subword
tokenization algorithms [9]. According to these
principles, frequently appearing terms should not be
segmented, but rarely used combinations of characters
should be decomposed [10].

The most widely used subword tokenization methods
in transformer-based PLMs are the WordPiece and
SentencePiece algorithms [11,12]. While WordPiece
tokenizes input text by finding the sequence of characters
that can make the longest word, SentencePiece tokenizes
input text by predicting the most common token that
appears after the previous token [12]. Thus, WordPiece
is sensitive to the wordlist of a given language while

mailto:jeonkh0310@yonsei.ac.kr
mailto:glee@yonsei.ac.kr

SentencePiece is language-independent [13].
In this study, we investigated the effect of the

difference between WordPiece and SentencePiece
algorithms on NER performance. Three pre-trained
language models—Multilingual Bidirectional Encoder
Representations from Transformers (mBERT), Korean
Efficiently Learning an Encoder that Classifies Token
Replacements Accurately (KoELECTRA), and Korean
BERT (KoBERT)—were fine-tuned using a defect
complaint corpus through transfer learning. Each pre-
trained model has its own embedded tokenizer with two
different subword tokenization algorithms, either
WordPiece or SentencePiece. To perform NER based on
housing defect complaints, we also defined defect-
specific named entity tags in the pre-processing step. The
NER performance was evaluated using the F1 score and
accuracy.

The paper is organized as follows. In Section 2,
related works on solutions to OOV problems and
subword tokenization methods are reviewed. In Section
3, the research methods are described in detail. In Section
4, the results are presented with some discussion, and in
Section 5, study limitations and suggestions for future
work are provided.

2 Related Work

2.1 OOV Problems and Solutions
Fundamentally, OOV problems occur because a

language model is dependent on a training dataset [14].
During the language model training process, if the words
do not appear in the training dataset, the language model
cannot learn the embedding vectors. Consequently, OOV
problems degrade the system performance. More severe
OOV problems occur in low-resource languages (e.g.,
non-alphabetical languages) or web-generated text,
including slang, coinage, and emojis [4]. To overcome
these problems, several solutions have been proposed.

The easiest and simplest method is to eliminate OOV
as noise [14]. However, this method is rarely used, owing
to the risk of losing important words. Another solution is
to use spell-check algorithms, such as the Peter Norvig
algorithm [15] and the Levenstein distance [16].
However, spell-check algorithms cannot solve semantic
OOV problems caused by jargon or slang.

Previous studies have proposed deep learning-based
typo embedding methods [17] or language-independent
architecture of robust word vectors [18]. However, these
methods were not able to separate irregular morphemes
of agglutinative words into meaningful units.
Consequently, they could not be applied to solve OOV
problems in agglutinative languages, such as Korean.

Some studies focused on dealing with OOV problems
considering the linguistic features of Korean [14,19–21].

One of the specific linguistic features of Korean that
previous studies mainly focused on is a sub-character,
called ‘jamo’, which consists of 14 consonants and 10
vowels. However, although those studies have proposed
high performance on tokenization regarding sub-
characters, the proposed methods are limited to use for
the tokenizer the existing transformer-based language
models. A comparison of the previous efforts to mitigate
OOV problems is shown in Table 1.

Table 1. Comparison of the existing methods that
mitigate OOV problems

Previous
methods

Advantage Disadvantage Ref.

Remove
OOV

Easy Losing
information

[14]

Spell-check Easy,
Accurate

Not effect for
semantic errors

[15,16]

Deep-
learning-

based

Robust on
typos

Not effect for
rich-morpheme

languages

[17,18]

Language-
specific
OOV

handling

Specific to
language
features

Limited to
transformer-

based language
models

[14,19–
21]

To overcome the previous methods’ limitations, and
solve the OOV problem while utilizing most state-of-the-
art (SOTA) language models based on the transformer
architecture, subword tokenization—a method for
segmenting words into smaller units—has emerged [4].
The smaller units can be Unicode or characters, which
can no longer be divided based on the specific algorithm
[22]. Various subword tokenization algorithms that have
been used by integrating transformer-based language
models are described in the following section.

2.2 Subword Tokenization Algorithms
There are several types of subword tokenization

methods, such as byte pair encoding (BPE) [3], unigram
language model (ULM) [6], WordPiece [4], and
SentencePiece [13].

BPE is a basic subword tokenization algorithm,
which finds pairs of characters that appear the most
sequentially and combines them into one word [3]. BPE
was originally introduced to compress data [23], after
which the algorithm was proposed as an OOV solution
for neural machine translation [3]. In the iterative process
of BPE, a set containing a pair or token and a token’s
frequency is generated. Then, each token is divided into
character levels by a pre-tokenizer according to the space.
In each iteration, the most frequent character pair is

merged until the desired or pre-defined vocabulary size
is reached. The core idea of BPE is to consider text as a
sequence of bytes rather than a sequence of characters.
Therefore, BPE can be applied to any type of character
[3].

The WordPiece model is an expanded BPE algorithm.
An ideal subword tokenizer divides low-frequency or
morphologically complex words into smaller subword
units, otherwise keeping high-frequency words as they
are. The WordPiece tokenizer is used in BERT,
DistillBERT, and ELECTRA [4]. The WordPiece model
merges pairs of characters that increase the likelihood of
a corpus, which is different from BPE, which uses word
frequency. In other words, WordPiece algorithms choose
to divide or preserve words depending on the direction
that increases the probability of the language model the
most.

A unigram language model (ULM) was proposed
based on a subword tokenization algorithm that outputs
multiple subword tokenization with probabilities [6]. The
ULM supposes that each subword occurs independently,
and consequently. Therefore, each subword occurrence
probability can be estimated by maximizing the expected
likelihood. A ULM is usually used with SentencePiece in
transformer-based language models to increase system
performance.

SentencePiece is an unsupervised subword tokenizer
and detokenizer [13,24], and was developed based on
ULM [6] and BPE [3] subword regularization algorithms.
Unlike all other algorithms, which require pre-
tokenization based on whitespace, SentencePiece
directly processes the input text without pre-tokenization.
Instead of pre-tokenization, SentencePiece can be trained
using raw sentences that include whitespace. In addition,
the original whitespace can be preserved by replacing it
with an underscore (‘_’; represented by U+2581 in
Unicode) in the subword tokenization stage. Conversely,
the subword tokens can be detokenized without any
ambiguity caused by whitespace. For example, the
complaint ‘wall paper torn’ can be segmented as ‘['▁w',
'all', '▁p', 'ap', 'er', '▁t', 'or', 'n']’ by the SentencePiece
tokenizer. This shows that SentencePiece considers a
sentence as a Unicode sequence rather than characters.
This principle makes SentencePiece work on non-space
or space-free languages. This is the most significant
difference from other subword tokenization algorithms
because it makes the SentencePiece language
independent. As SentencePiece supports on-the-fly
processing through Python and Tensorflow Library API,
it can be easily integrated and customized with other
frameworks. SentencePiece has been widely adopted in
many SOTA language models, such as ALBERT [25],
XLNet [26], and T5 [27]. A comparison of subword
tokenization methods is shown in Table 2.

After conducting a thorough review of previous

efforts, we have identified several research gaps. First,
there exist multiple effective subword tokenization
algorithms that are dependent on the linguistic features of
a given language. The language-dependent tokenizer
requires separate training for every language it may not
perform as well in cross-lingual tasks. Second, the choice
of subword tokenization algorithm is determined during
the pre-training process of the internal tokenizer of the
PLMs. Third, the various subword tokenization
approaches employed by different PLMs can have a
significant impact on the performance of downstream
tasks.

Table 2. Comparison of subword tokenization methods

Cate
gory

BPE [3] ULM [6] Word
Piece [4]

Sentence
Piece [13]

SA Char,
Unicode

Char BPE BPE,
ULM

FP Word
frequency

Likeli-
hood

Likelihood BPE-
dropout

VS Enlargeme
nt

Pre-
defined

Enlarge-
-ment

Pre-
defined

PT Require Require Require No
OS Yes Yes Google

internal
Yes

PL No No N/A Yes
HT Yes Yes Yes Yes

* SA: Supported algorithms; FP: Functional principle;
VS: Vocab-Size; PT: Pre-tokenization required; OS:
Open source; PL: Python library available; HT:
HuggingFace tokenizer available.

In light of these research gaps, it is crucial to consider
the linguistic features, such as the agglutinative nature of
the Korean language, when performing NER using
transformer-based PLMs. Fourth, NER tasks with
domain-specific text data and their respective subword
tokenization algorithm have been rarely studied.
Therefore, this study aims to identify the most effective
PLM and subword tokenization algorithm for domain-
specific NER tasks for construction defect management.

3 Research Methods
The research flow is depicted in Figure 1. For this

study, over 90,000 defect complaints were collected from
several collective housing construction sites in South
Korea. After performing deduplication and removing
abnormal data, a dataset of 69,750 complaints was used
for training and validation Additionally, we created a
separate ground truth test dataset consisting of 4,566
complaints gathered from different construction sites.
The test dataset was constructed through cross-validation

by three researchers, who possess extensive defect
inspection experience at construction sites.

After pre-processing and tokenizing, the collected
data were labeled with defect named entity tags for NER.
Labeling was performed on a rule basis using a dictionary
of defective object names that corresponded to 23 tags
defined in advance. The first labeling results were cross-
validated by three researchers who perform defect
inspections at construction sites.

Subsequently, the labeled dataset was divided into a
training dataset for transfer learning and a testing dataset
for the NER performance evaluation at a ratio of 9:1.
Before transfer learning, the PLM uses each tokenizer to
perform subword tokenization of the input text. In the test
phase of the fine-tuned language model, the same
subword tokenization was applied. The NER results are
compared with the F1 score and accuracy as evaluation
indices.

Figure 1. Research flow

3.1 Tokenization and Labeling Dataset
As Korean is an agglutinative language, most Korean

words consist of ‘a stem of the word (a meaning part)’
and ‘a particle or an ending (a grammatical part).’ For
example, ‘물이새는(water leak)’ can be decomposed to
the following combination: ‘물(water: stem)’+

‘이(particle)’ + ‘새(-다)(leak: stem)’+ ‘(ending)’. The
morpheme analysis-based tokenization method is
required to separate and process the meaning parts and
the grammatical function parts.

To achieve this, we used Korean-specific NLP
libraries, including MeCab-Ko [28], a Korean version of
the original MeCab [29], for morpheme analysis and
tokenization. In the first pre-processing step, the date or
time expressions, ‘07/07/2021’ and ‘07:37’, were
processed and extracted using regular expression rules,
and other punctuation and symbols were removed. Then,
the rest of the pure text part was tokenized using the
MeCab-Ko tokenizer. The pure text part of the defect
complaints was tokenized, and the part of speech (POS)
was tagged. We extracted not only nouns but also verbs,
adjectives, and adverbs because they also represent
defect phenomena: for example, ‘skew(-ed)’ or ‘tilt(-ed)’.

After tokenization, all tokens should be labeled with
an NE tag, information that we want to extract. Moreover,
it is necessary to label the entire dataset to construct the
training dataset and the ground truth. Before labeling the
NE tags, we need to define defect-related NE categories.
Unlike existing NER methods that have general NE tags,
such as the name of the country, city, or person, domain-
specific NE tags should be defined to recognize the
specialized terms in a certain domain. In this study, 17
tags were defined based on Omniclass Table 22 [30]. The
categories include structure work (STR), waterproofing
(WPF), electrical work (ELC), door and window (DNW),
cabinet work (FUR), stonework (STM), paper hanging
work (PAP), flooring (FLR), painting and finishing
(FNS), tiling (TLE), masonry (MSN), home appliance
work (APL), mechanical systems (MEC), gas fitting
work (GAS), fire protection work (FIR), miscellaneous
(MIS), and elevator work (ELV). In addition, five meta-
data categories were defined to identify the date and time
(TME), the name of the room or space (SPC), a specific
part of the space, such as ‘above’ or ‘left side’ (LOC), the
type of request (REQ), the name of person or
organization in charge of the repair work (WHO) and
expressions that describe defect phenomena (DFT).

To label the dataset using 23 NE tags, we checked the
tokenization error cases, which means a series of words
that should not be decomposed are tokenized. For
example, a multi-token entity consists of more than one
word, such as ‘poor horizontal and vertical alignment’,
which is tokenized as five words: ‘poor/ horizontal/ and/
vertical/ alignment’. If this multi-token entity is
decomposed, the original meaning will be lost, and it
cannot be properly recognized as a defect NE. As a
solution, we performed tokenization and NE labeling
according to the ‘inside-outside-beginning2 (IOB2)
scheme’. The IOB2 scheme is a popular tagging scheme
for recognizing a multi-token NE in an NER task [31]. ‘I’
indicates that the token is inside the NE, and ‘B’ indicates

Transfer learning of
the pre trained

language models

efect
complaints

dataset
(,7 0)

ultilingual
BE T

KoBE T

KoELECT

Tokeni ation and labeling named entities

 plit training and
validation datasets (:1)

ubword tokeni ation

Training
dataset

(2 ,77)

Evaluation of the
fine tuned model

ultilingual
BE T

KoBE T

KoELECT

ubword tokeni ation

Evaluation using
1 and accurac

dditionall
collected defect

complaints
(,)

alidation
dataset
(, 7)

Test
dataset
(,)

round truth
construction

Training flow
Test flow

the start token of the NE. ‘O’ indicates that the token
belongs to none of the NE. ‘I’ and ‘B’ are joined in front
of each NE tag (i.e., B-DFT, B-SPC, and I-SPC), and ‘O’
is used alone. The dataset was labeled based on the rule-
based method, and then the automatically labeled dataset
was cross-validated by three researchers who have defect
inspection experience.

3.2 Pre-trained Language Models with
Different Subword Tokenization
Algorithms

The PLM has a substantial number of context
vectors and vocabularies. Thus, it is easy to shift and use
efficiently for specific tasks by fine-tuning based on the
transfer learning rather than training the whole neural
architecture from scratch. For specific domains (e.g.,
medical or construction), fine-tuning a PLM with a
domain-specific corpus is recommended to achieve
higher performance [32]. Therefore, we chose three
PLMs and implemented them for NER transfer learning.

Three PLMs with different subword tokenizers were
used to transfer learning for NER. The mBERT
developed by Google and KoELECTRA have a
WordPiece tokenizer, while KoBERT uses a
SentencePiece tokenizer. As the dataset is Korean, we
first selected mBERT [33] as the baseline model. We also
selected KoBERT, a specifically trained BERT with the
Korean dataset KoWiki composed of 54 million words
[34]. KoELECTRA [35] was chosen to compare the
performance of different language model algorithms
between BERT and ELECTRA, which is known for
exceeding BE T’s performance in terms of training
speed with less data. The specifications of the three pre-
trained language models are described in Table 3.

Table 3. Details of the pre-trained language models

Category KoBERT mBERT Ko-
ELECTRA

Tokenizer
Algorithm

SentencePie
ce

WordPiece WordPiece

Pre-trained
Language

Korean 104
languages

Korean

Parameter 92M 110M 110M
Layers 12 12 12

Reference [34] [36,37] [38,39]

3.3 Experiment Design
Subword tokenization was performed as a previous

step for fine-tuning PLMs. The input text data are
tokenized by the pre-trained tokenizer designated by each
language model. In this process, the label of each token

was also expanded to the same number of subword
tokens. Then, subword tokens and labels were converted
to a numerical format using a pad sequence, and the
attention mask was generated at the same time. We
observed the subword tokenization results in the middle
of the experiment process to determine how subword
tokenization affects the final NER performance. To
compare this with the case without subword tokenization,
a deep neural network model, a bi-directional long-short-
term-memory (bi-LSTM) network, was performed as a
baseline.

All input texts were fit into the same fixed length of
the 0.985 quantile value (top 1.5%) of the entire training
dataset, because all the text lengths of the input data are
different. In this process, the 0.985 quantile value was
defined as the maximum length, one of the
hyperparameters that determines the input vector shape.
The same value of the 0.985 quantile of the input text
length was applied to the input of the testing dataset in
the evaluation.

In the experiments, all three PLMs were fine-tuned to
only three epochs with a batch si e of 32, an ‘ d am’
optimizer with a learning rate of 2.E-05, and
‘ p arseCategoricalCrossentrop ’ as for a loss function. It
is important to note that batch size refers to the number
of data points used to update the model’s parameters
during a single forward/backward pass. The ‘ d am’
optimi er , which stands for ‘ d aptive o ment
Estimation’ is commonl used in deep neural networks
for its training efficiency. Despite the default learning
rate value of 1.E-03, we opted for a smaller value of 2.E-
05 for enhancing generalization efficiency

3.4 Evaluation Metrics
Accuracy and the F1 score were employed to evaluate

the NER performance considering each performance of
the NE tags. The total number of NE tags is 46, which is
twice the unique 23 tags owing to the addition of ‘I’ and
‘B’ of the IOB2 scheme. Similar to the multi-class
classification with imbalanced data distribution, the F1
score, a harmonic mean of precision and recall, is widely
used for evaluating NER performance [40]. Accuracy
refers to the ratio of the number of correctly predicted
samples over the number of all samples regardless of
class. Therefore, we measured both F1 score and
accuracy to consider the imbalanced distribution of each
NE tag. The evaluation metrics for integrating NER tags
can be automatically obtained with a Python library for
sequence labeling evaluation named ‘seqeval’ [41].

4 Results and Discussion
The NER performance results depending on the three

PLMs with different subword tokenization algorithms
are shown in Table 4.

Table 4. NER performance results for the deep neural
network-based model and three PLMs with different

subword tokenization methods

NER Models SW-T* F1
(%)

Acc.
(%)

(Baseline) bi-LSTM - 23.0 49.0
mBERT WP 72.0 86.6

KoELECTRA WP 72.4 86.3
KoBERT SP 84.7 89.3

*SW-T: Subword tokenization algorithm; WP:
WordPiece; SP: SentencePiece

For the NER performance, the KoBERT model using
the SentencePiece algorithm as a subword tokenizer had
the best F1 score (84.7%) and an accuracy of 89.3%.
There was little difference in performance between the
BERT and ELECTRA models using the WordPiece
algorithm, but a significant difference in the F1 score,
which was 11.7% lower than that of the KoBERT model.
For the baseline, the bi-LSTM showed a very low
performance even with the same training and test datasets
except for the subword tokenization step.

Table 5. Subword tokenization results (translated into
English from the original Korean words)

Word
Tag

KoBERT mBERT KoELECT
RA

Zendai _Zendai Zen##da##i Zen##dai

B-STN O B-STN

Osai _Osai O##sa##i Osa##i

B-DNW O B-DNW

Ventil
ating
Fan

_Ventilating
_Fan

[UNK] Ventilating
##Fan

B-SYS/
I-SYS

O B-SYS/
I-SYS

Float-
ing

_Float_ing Flo##[UNK] Floating

B-DFT/
I-DFT

O B-DFT

Horizo
ntal

Defect

_Horizontal
_defect

Horizon##tal#
#de##fect

Horizontal
##defect

B-DFT/
I-DFT

B-DFT B-DFT/
I-DFT

To compare the subword tokenization results of three
language models, we selected five words—zendai, osai,
ventilating fan, floating, and horizontal defect—that
frequently lead to tokenization errors when a morpheme-
based tokenizer is used.

The results for subword tokenization with the
corresponding NER tag relying on three PLMs are shown
in Table 5. KoBERT with SentencePiece correctly

tokenized all words, but mBERT and KoELECTRA
showed different results although they used the same
WordPiece algorithm. In mBERT, the defect-related
tokens were incorrectly tagged with the ‘O’ tag because
the segmented tokens were recognized as [UNK].

The subword sequences tokenized by mBERT
showed a smaller segmentation pattern similar to
KoELECTRA. This result can be interpreted as
KoELECTRA was trained one more time in Korean, and
naturally, its vocabulary is larger; thus, the probability of
preserving a word is greater than the probability of
splitting a word.

5 Conclusion
The OOV problem deteriorates the overall NER

performance because invalid tokens recognized as
‘unknown’ fail in named entity tagging. And this problem
occurs more often in agglutinative language such as
Korean due to its complex morphological feature. To
mitigate this problem, subword tokenization methods
have been widely used, which either decompose the word
into subword units or aggregate in reverse based on the
maximization of probability or likelihood between the
sequence of the subword units. Based on these principles,
most state-of-the-art transformer-based language models
adopt WordPiece or SentencePiece, the representative
subword tokenization algorithms, as their tokenizer.

In this study, we investigated differences in NER
performance when we suggested that the different
subword tokenization methods affect the overall
downstream task. To validate this hypothesis, mBERT
and KoELECTRA using WordPiece and KoBERT using
SentencePiece were selected. In NER, each subword
tokenization was applied before the fine-tuning and
testing steps. This means that each language model
obtains a different shape of the sequence of the tokens as
an input, depending on the subword tokenization method.

As a result, this study confirmed that the KoBERT
model using the SentencePiece tokenizer showed the best
performance based on the F1 score (84.7%), as well as
the most accurate tokenization results. In addition,
SentencePiece showed more robust tokenization results
in Korean than WordPiece. Although this study has
limitations in not controlling for other factors that can
affect performance, such as parameter optimization
during transfer learning or skewed distribution of NE tags,
they will be further investigated and adjusted to deliver
more robust results in future studies. Another future
study will include further validation of whether the direct
training of SentencePiece using a domain-specific corpus
improves downstream tasks.

Acknowledgements
This work was supported by a National Research
Foundation of Korea (NRF) grant (No.
2021R1A2C3008209) and an Institute for Information
and Communications Technology Promotion (IITP)
grant (No. 2019-0-01559-001), both funded by the
Ministry of Science and ICT (MSIT) of Korea.

References
[1] N. Garneau, J.-S. Leboeuf, L. Lamontagne,

Predicting and interpreting embeddings for out of
vocabulary words in downstream tasks, (2019).
https://doi.org/10.48550/arXiv.1903.00724.

[2] Y. Goldberg, Neural Network Methods for Natural
Language Processing, Synthesis Lectures on
Human Language Technologies. 10 (2017) 1–309.
https://doi.org/10.2200/S00762ED1V01Y201703
HLT037.

[3] R. Sennrich, B. Haddow, A. Birch, Neural
Machine Translation of Rare Words with Subword
Units, (2016).
https://doi.org/10.48550/arXiv.1508.07909.

[4] M. Schuster, K. Nakajima, Japanese and Korean
voice search, in: 2012 IEEE International
Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2012: pp. 5149–5152.
https://doi.org/10.1109/ICASSP.2012.6289079.

[5] Y. Pinter, R. Guthrie, J. Eisenstein, Mimicking
Word Embeddings using Subword RNNs, (2017).
https://doi.org/10.48550/arXiv.1707.06961.

[6] T. Kudo, Subword Regularization: Improving
Neural Network Translation Models with Multiple
Subword Candidates, (2018).
https://doi.org/10.48550/arXiv.1804.10959.

[7] S. Moon, N. Okazaki, PatchBERT: Just-in-Time,
Out-of-Vocabulary Patching, in: Proceedings of
the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP),
Association for Computational Linguistics, Online,
2020: pp. 7846–7852.
https://doi.org/10.18653/v1/2020.emnlp-main.631.

[8] S. Moon, N. Okazaki, Jamo Pair Encoding:
Subcharacter Representation-based Extreme
Korean Vocabulary Compression for Efficient
Subword Tokenization, in: Proceedings of the 12th
Language Resources and Evaluation Conference,
European Language Resources Association,
Marseille, France, 2020: pp. 3490–3497.
https://www.aclweb.org/anthology/2020.lrec-
1.429 (accessed March 23, 2021).

[9] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova,
BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding, in:

Proceedings of the 2019 Conference of the North
American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
Association for Computational Linguistics,
Minneapolis, Minnesota, 2019: pp. 4171–4186.
https://doi.org/10.18653/v1/N19-1423.

[10] Summary of the tokenizers, (n.d.).
https://huggingface.co/docs/transformers/main/to
kenizer_summary (accessed January 4, 2023).

[11] A. Nayak, H. Timmapathini, K. Ponnalagu, V.
Gopalan Venkoparao, Domain adaptation
challenges of BERT in tokenization and sub-word
representations of Out-of-Vocabulary words, in:
Proceedings of the First Workshop on Insights
from Negative Results in NLP, Association for
Computational Linguistics, Online, 2020: pp. 1–5.
https://doi.org/10.18653/v1/2020.insights-1.1.

[12] R. Ma, Y. Tan, X. Zhou, X. Chen, D. Liang, S.
Wang, W. Wu, T. Gui, Q. Zhang, Searching for
Optimal Subword Tokenization in Cross-domain
NER, (2022).
https://doi.org/10.48550/arXiv.2206.03352.

[13] T. Kudo, J. Richardson, SentencePiece: A simple
and language independent subword tokenizer and
detokenizer for Neural Text Processing,
ArXiv:1808.06226 [Cs]. (2018).
http://arxiv.org/abs/1808.06226 (accessed August
20, 2021).

[14] O. Kwon, D. Kim, S.-R. Lee, J. Choi, S. Lee,
Handling Out-Of-Vocabulary Problem in Hangeul
Word Embeddings, in: Proceedings of the 16th
Conference of the European Chapter of the
Association for Computational Linguistics: Main
Volume, Association for Computational
Linguistics, Online, 2021: pp. 3213–3221.
https://doi.org/10.18653/v1/2021.eacl-main.280.

[15] P. Norvig, How to Write a Spelling Corrector,
(2007). http://norvig.com/spell-correct.html
(accessed December 2, 2021).

[16] K. Kukich, Techniques for automatically
correcting words in text, Acm Computing Surveys
(CSUR). 24 (1992) 377–439.

[17] B. Edizel, A. Piktus, P. Bojanowski, R. Ferreira, E.
Grave, F. Silvestri, Misspelling Oblivious Word
Embeddings, (2019).
https://doi.org/10.48550/arXiv.1905.09755.

[18] V. Malykh, V. Logacheva, T. Khakhulin, Robust
Word Vectors: Context-Informed Embeddings for
Noisy Texts, in: Proceedings of the 2018 EMNLP
Workshop W-NUT: The 4th Workshop on Noisy
User-Generated Text, Association for
Computational Linguistics, Brussels, Belgium,
2018: pp. 54–63.
https://doi.org/10.18653/v1/W18-6108.

[19] S. Lee, H. Shin, The Korean Morphologically
Tight-Fitting Tokenizer for Noisy User-Generated
Texts, in: Proceedings of the Seventh Workshop
on Noisy User-Generated Text (W-NUT 2021),
Association for Computational Linguistics, Online,
2021: pp. 410–416.
https://doi.org/10.18653/v1/2021.wnut-1.45.

[20] S. Eo, C. Park, H. Moon, H. Lim, Research on
Subword Tokenization of Korean Neural Machine
Translation and Proposal for Tokenization Method
to Separate Jongsung from Syllables, Journal of
the Korea Convergence Society. 12 (2021) 1–7.
https://doi.org/10.15207/JKCS.2021.12.3.001.

[21] K. Park, J. Lee, S. Jang, D. Jung, An Empirical
Study of Tokenization Strategies for Various
Korean NLP Tasks, ArXiv:2010.02534 [Cs].
(2020). http://arxiv.org/abs/2010.02534 (accessed
January 11, 2021).

[22] T. Mikolov, I. Sutskever, A. Deoras, H.-S. Le, S.
Kombrink, J. Cernocky, Subword language
modeling with neural networks, Preprint
(Http://Www. Fit. Vutbr.
Cz/Imikolov/Rnnlm/Char. Pdf). 8 (2012).
http://www. fit. vutbr. cz/imikolov/rnnlm/char. pdf.

[23] P. Gage, A new algorithm for data compression, C
Users Journal. 12 (1994) 23–38.

[24] SentencePiece, (2023).
https://github.com/google/sentencepiece (accessed
January 3, 2023).

[25] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P.
Sharma, R. Soricut, ALBERT: A Lite BERT for
Self-supervised Learning of Language
Representations, ArXiv:1909.11942 [Cs]. (2020).
http://arxiv.org/abs/1909.11942 (accessed May 21,
2021).

[26] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R.
Salakhutdinov, Q.V. Le, XLNet: Generalized
Autoregressive Pretraining for Language
Understanding, ArXiv:1906.08237 [Cs]. (2020).
http://arxiv.org/abs/1906.08237 (accessed May 21,
2021).

[27] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S.
Narang, M. Matena, Y. Zhou, W. Li, P.J. Liu,
Exploring the Limits of Transfer Learning with a
Unified Text-to-Text Transformer, (2020).
https://doi.org/10.48550/arXiv.1910.10683.

[28] Y. Lee, Y. Yoo, Eunjeon / mecab-ko — Bitbucket,
(2013). https://bitbucket.org/eunjeon/mecab-ko-
dic/src/master/ (accessed August 9, 2021).

[29] T. Kudo, Mecab: Yet another part-ofspeech and
morphological analyzer, SourceForge. (2006).
https://sourceforge.net/projects/mecab/ (accessed
August 9, 2021).

[30] C. OmniClass, OmniClass Table 22- Work Results
approved, (2013). www.omniclass.org.

[31] H.-C. Cho, N. Okazaki, M. Miwa, J. Tsujii, Named
entity recognition with multiple segment
representations, Information Processing &
Management. 49 (2013) 954–965.
https://doi.org/10.1016/j.ipm.2013.03.002.

[32] J. Li, A. Sun, J. Han, C. Li, A Survey on Deep
Learning for Named Entity Recognition,
ArXiv:1812.09449 [Cs]. (2020).
http://arxiv.org/abs/1812.09449 (accessed
February 2, 2021).

[33] J. Devlin, BERT-Base: Multilingual Cased,
GitHub Repository. (2019).
https://github.com/google-
research/bert/blob/master/multilingual.md.

[34] H. Jeon, SKT-KoBERT: Korean BERT pre-
trained cased, GitHub Repository. (2020).
https://github.com/SKTBrain/KoBERT.

[35] J. Park, KoELECTRA: Pretrained ELECTRA
Model for Korean, GitHub Repository. (2020).
https://github.com/monologg/KoELECTRA.

[36] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova,
BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding, in:
Proceedings of the 2019 Conference of the North
American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
Association for Computational Linguistics,
Minneapolis, Minnesota, 2019: pp. 4171–4186.
https://doi.org/10.18653/v1/N19-1423.

[37] J. Devlin, BERT-Base: Multilingual Cased,
GitHub Repository. (2019).
https://github.com/google-
research/bert/blob/master/multilingual.md.

[38] K. Clark, M.-T. Luong, Q.V. Le, C.D. Manning,
ELECTRA: Pre-training Text Encoders as
Discriminators Rather Than Generators,
ArXiv:2003.10555 [Cs]. (2020).
http://arxiv.org/abs/2003.10555 (accessed August
11, 2021).

[39] J. Park, KoELECTRA: Pretrained ELECTRA
Model for Korean, GitHub Repository. (2020).
https://github.com/monologg/KoELECTRA.

[40] P. Hüthwohl, R. Lu, I. Brilakis, Multi-classifier for
reinforced concrete bridge defects, Automation in
Construction. 105 (2019) 102824.
https://doi.org/10.1016/j.autcon.2019.04.019.

[41] H. Nakayama, seqeval: A Python framework for
sequence labeling evaluation, (2018).
https://github.com/chakki-works/seqeval.

